

The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

1. GENERAL INFORMATION

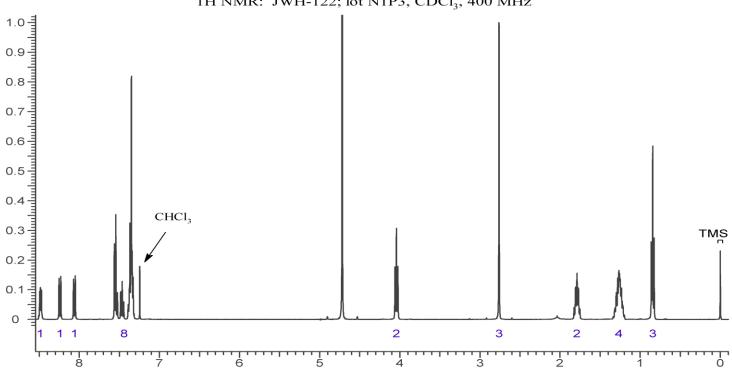
IUPAC Name:	(4-methylnaphthalen-1-yl)(1-pentyl-1 <i>H</i> -indol-3-yl)methanone
<i>CAS #</i> :	619294-47-2
Synonyms:	(4-methyl-1-naphthyl)-(1-pentylindol-3-yl)methanone, (4-methyl-1-naphthalenyl)-(1-pentyl-3-indolyl)methanone, (4-methylnaphthalen-1-yl)-(1-pentylindol-3-yl)methanone, (1-amylindol-3-yl)-(4-methyl-1-naphthyl)methanone
Source:	DEA Reference Material Collection
Appearance:	Tan powder
UV _{max} :	221.8, 314.6

2. CHEMICAL AND PHYSICAL DATA

2.1 CHEMICAL DATA

Form	Chemical Formula	Molecular Weight	Melting Point (°C)
Base	C ₂₅ H ₂₅ NO	355	88.9

The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

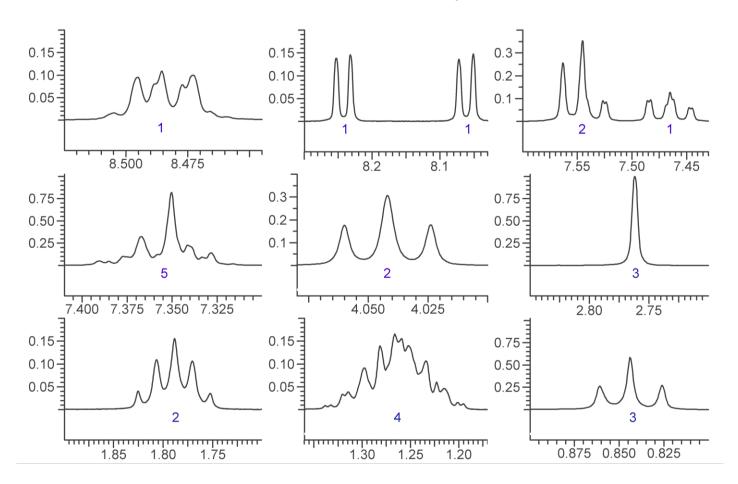

3. QUALITATIVE DATA

3.1 NUCLEAR MAGNETIC RESONANCE

Method NMR CDCl₃

Sample Preparation: Dilute analyte to ~10 mg/mL in CDCl₃ containing TMS for 0 ppm reference and methenamine as quantitative internal standard.

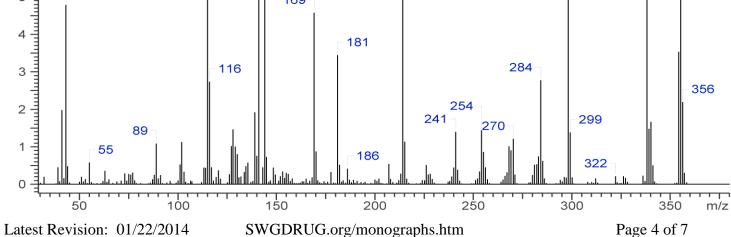
Instrument:	Varian Mercury 400 MHz NMR spectrometer with proton detection probe
Parameters:	Spectral width: at least containing -3 ppm through 13 ppm Pulse angle: 90° Delay between pulses: 45 seconds Number of scans (NT): 8 Number of steady state scans: 0 Oversampling: 4 or more Shimming: automatic gradient shimming of Z1-4 shims Phasing, Drift Correction: automatic or manual


1H NMR: JWH-122; lot N1P3, CDCl₃, 400 MHz

SWGDRUG NOT SWGDRUG

The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

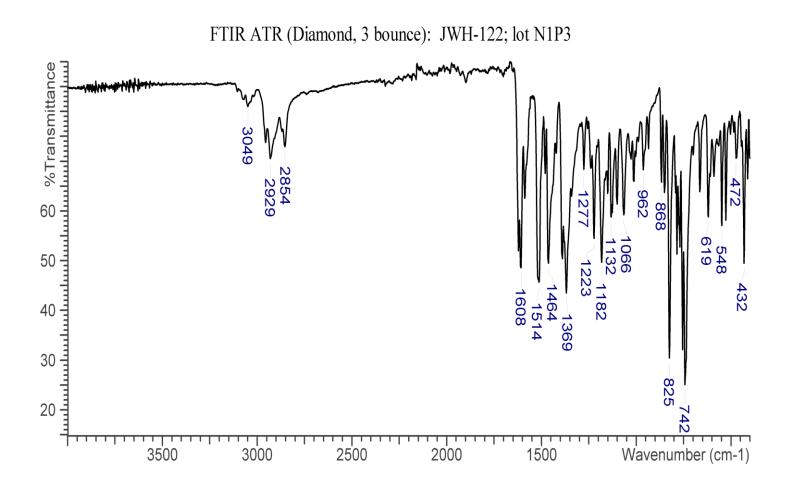
1H NMR: JWH-122; lot N1P3, CDCl₃, 400 MHz


The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

SWCDRUC

3.2 GAS CHROMATOGRAPHY/MASS SPECTROMETRY

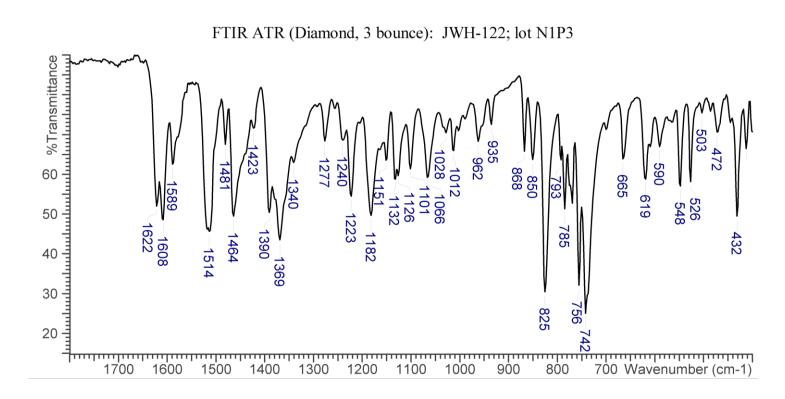
Sample Preparation: Dilute ana	alyte ~ 1 mg/mL into methanol.	
Instrument:	Gas chromatograph operated in split mode with MS detector	
Column:	DB-1 MS or equivalent; 30m x 0.25mm x 0.25µm	
Carrier Gas:	Helium at 1 mL/min	
Temperatures:	Injector: 280°C MSD transfer line: 280°C MS Source: 230°C MS Quad: 150°C Oven program: 1) 100°C initial temperature for 1.0 min 2) Ramp to 300°C at 12°C/min	
Injustion Davameters.	3) Hold final temperature for 9.0 min Split Ratio = 25:1, 1 μL injected	
Injection Parameters:		
MS Parameters: Retention Time:	Mass scan range: 30-550 amu Threshold: 100 Tune file: stune.u Acquisition mode: scan 21.420 minutes	
	EI Mass Spectrum: JWH-122; lot N1P3	
5 115	355 144 214 298 141 338 169 181	



SWGDRUG

The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

3.3 INFRARED SPECTROSCOPY (FTIR)


Instrument: Scan Parameters: FTIR with diamond ATR attachment (3 bounce) Number of scans: 32 Number of background scans: 32 Resolution: 4cm⁻¹ Sample gain: 8 Aperture: 150

SWGDRUG

The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

4. ADDITIONAL RESOURCES

Nakajima J, Takahashi M, Seto T, *et al.* Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122, and JWH-019 as adulterants in illegal products obtained via the internet. J Forensic Toxicol. 2011; 29(2): 95-110.

Ernst L, Schiebel HM, Theuring C, Lindigkeit R, Beuerle T. Identification and characterization of JWH-122 used as new ingredient in "Spice-like" herbal incenses. *J Forensic Science International*. 2011; 208: E31-E35.

De Freitas GBL, da Silva LL, Romeiro NC, Fraga CAM. Development of CoMFA and CoMSIA models of affinity and selectivity for indole ligands of cannabinoid CB1 and CB2 receptors. *Eur. J. Med. Chem.* 2009; 44(6): 2482-2496.

Tuccinardi T, Ferrarini PL, Manera C, Ortore G, Saccomanni G, Martinelli A. Cannabinoid CB2/CB1 Selectivity. Receptor Modeling and Automated Docking Analysis. *J. Med. Chem.* 2006; 49(3): 984-994.

Martin BR, Huffman JW, inventors; CB2-selective cannabinoid analogues. US patent 2005-0009903 A1. January 13, 2005.

Huffman JW, Zengin G, Wu, MJ, et al.Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at
the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly
selective CB2 receptor agonists. Bioorg. Med. Chem. 2004; 13(1): 89-112.Latest Revision:01/22/2014SWGDRUG.org/monographs.htmPage 6 of 7

The Drug Enforcement Administration's Special Testing and Research Laboratory generated this monograph using structurally confirmed reference material.

Huffman JW, Mabon R, Wu, MJ, *et al.* 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB1 cannabinoid receptor. *Bioorg. Med. Chem.* 2003; 11(4): 539-549.

Forendex

Wikipedia