DMAA Latest Revision: April 19, 2013

1. GENERAL INFORMATION

IUPAC Name: 4-methylhexan-2-amine

CFR: Not Scheduled (4/2013)

CAS #: 105-41-9

Synonyms: 1,3-dimethylamylamine, methylhexanamine, 2-amino-4-methylhexane,

1,3-dimethylpentylamine, 4-methyl-2-hexylamine

Source: DEA Reference Material Collection

Appearance: White powder (HCl)

Kovat's Index: Pending

UV_{max}: Not Determined

2. CHEMICAL AND PHYSICAL DATA

2.1 CHEMICAL DATA

Form	Chemical Formula	Molecular Weight	Melting Point (°C)
Base	C ₇ H ₁₇ N	115	Not Determined
HCl	C ₇ H ₁₇ N HCl	151	122.9

3. ADDITIONAL RESOURCES

Wikipedia

4. QUALITATIVE DATA

4.1 NUCLEAR MAGNETIC RESONANCE

Method NMR Dimethylfumarate/DMSO

Sample Preparation: Dilute analyte to ~10 mg/mL in DMSO containing TMS for 0 ppm reference and dimethylfumarate as quantitative internal standard.

Instrument: 400 MHz NMR spectrometer

Parameters: Spectral width: at least containing -3 ppm through 13 ppm

Pulse angle: 90°

Delay between pulses: 45 seconds

1H NMR: DMAA HCI Lot N1P7; DMSO; 400MHz

NMR Analytical Observation

DMAA has two chiral carbons; therefore, two diastereomers are possible. Diasteriomers produce slightly different chemical shifts for proton and carbon. Both diastereomers are present in the above spectra.

$$H_2N$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

4.2 GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Sample Preparation: Dilute analyte to ~1 mg/mL base extracted into chloroform

Instrument: Agilent gas chromatograph operated in split mode with MS detector

Column: DB-1 MS or equivalent; 30m x .25mm x .25μm

Carrier Gas: Helium at 1 mL/min Temperatures: Injector: 280°C

MSD transfer line: 280°C

MS Source: 230°C MS Quad: 150°C Oven program:

1) 100°C initial temperature for 1.0 min

2) Ramp to 300°C at 12°C/min 3) Hold final temperature for 9.0 min

Injection Parameters:Split Ratio = 20:1, 1 μL injectedMS Parameters:Mass scan range: 30-550 amu

Threshold: 100 Tune file: stune.u Acquisition mode: scan

Retention Time: 2.100 minutes

El Mass Spectrum: DMAA HCI Lot N1P7

Page 4 of 6

4.3 INFRARED SPECTROSCOPY (FTIR)

Instrument: FTIR with diamond ATR attachment (3 bounce)

Scan Parameters: Number of scans: 32

Number of background scans: 32

Resolution: 4cm⁻¹ Sample gain: 8 Aperture: 150

FTIR ATR (Diamond, 3 Bounce): DMAA HCI Lot N1P7

FTIR ATR (Diamond, 3 Bounce): DMAA HCI Lot N1P7

