1. SYNONYMS

CFR: 2,5-Dimethoxy-4-n-propylthiophenethylamine

CAS #:
- Base: Not Available
- Hydrochloride: 207740-26-9

Other Names:
- 2,5-Dimethoxy-4-
- 2,5-Dimethoxy-4-n-propylthiophenethylamine
- 2,5-Dimethoxy-4-propylthio-beta-phenethylamine
- 4-n-Propylthio-2,5-dimethoxybenzeneethanamine
- 2C-T-7

2. CHEMICAL AND PHYSICAL DATA

2.1. CHEMICAL DATA

<table>
<thead>
<tr>
<th>Form</th>
<th>Chemical Formula</th>
<th>Molecular Weight</th>
<th>Melting Point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>C_{13}H_{21}NO_{2}S</td>
<td>255.38</td>
<td>Not available</td>
</tr>
<tr>
<td>Hydrochloride</td>
<td>C_{13}H_{21}NO_{2}S·HCl</td>
<td>291.84</td>
<td>195-198</td>
</tr>
</tbody>
</table>

2.2. SOLUBILITY

<table>
<thead>
<tr>
<th>Form</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>H</th>
<th>M</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hydrochloride</td>
<td>PS</td>
<td>S</td>
<td>S</td>
<td>NA</td>
<td>VS</td>
<td>VS</td>
</tr>
</tbody>
</table>

A = acetone, C = chloroform, E = ether, H = hexane, M = methanol and W = water, VS = very soluble, FS = freely soluble, S = soluble, PS = sparingly soluble, SS = slightly soluble, VSS = very slightly soluble and I = insoluble, NA = not available

3. SCREENING TECHNIQUES

3.1. COLOR TESTS
3.2. GAS CHROMATOGRAPHY

Method SFL4 Screen

Instrument:
Gas chromatograph operated in split mode with FID

Column:
100% dimethylpolysiloxane gum
30 m x 0.25 mm i.d. x 0.25 µm film thickness

Carrier gas:
FID: Hydrogen at 1.3 mL/min

Makeup gas:
FID: Nitrogen at 40.0 mL/min

Temperatures:
- Injector: 250°C
- Detector: 300°C
- Oven program:
 1) 100°C initial temperature
 2) Ramp to 295°C at 35°C/min
 3) Hold final temperature for 6.43 min

Injection Parameters:
- Split Ratio: 100:1
- 1 µL injection

Sample dissolved in water and base extracted with 1-5 N sodium hydroxide into an organic solvent.

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>RRT</th>
<th>COMPOUND</th>
<th>RRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>amphetamine</td>
<td>0.446</td>
<td>4-MeOPP</td>
<td>0.850</td>
</tr>
<tr>
<td>methamphetamine</td>
<td>0.483</td>
<td>2C-B</td>
<td>0.880</td>
</tr>
<tr>
<td>nicotinamide</td>
<td>0.596</td>
<td>caffeine</td>
<td>0.889</td>
</tr>
<tr>
<td>3,4-MDA</td>
<td>0.673</td>
<td>2C-I</td>
<td>0.941</td>
</tr>
<tr>
<td>TFMPP</td>
<td>0.700</td>
<td>2C-T-2</td>
<td>0.954</td>
</tr>
<tr>
<td>3,4-MDMA</td>
<td>0.717</td>
<td>2C-T-7</td>
<td>1.000 (4.808 min)</td>
</tr>
</tbody>
</table>

3.3. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Method Phen01

Instrument: High performance liquid chromatograph equipped with mass spectrometer

Column: 5 µm ODS, 150 mm x 4.6 mm

Detector: Mass Spectrometer

Flow: 400 µL/min

Injection Volume: 5.0 µL

Buffer: 10 mM ammonium acetate in water

Mobile Phase: 1) Initially, CH₃OH: buffer 5:95 held for 10 min
2) Gradient to CH₃OH: buffer 80:20 over 10 min
3) Gradient to CH₃OH: buffer 5:95 over 10 min

Samples are to be dissolved in buffer solution, sonicated, and then filtered with a 0.45 µm filter.

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>RRT</th>
<th>COMPOUND</th>
<th>RRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ephedrine/pseudoephedrine</td>
<td>0.711</td>
<td>2C-I</td>
<td>0.933</td>
</tr>
<tr>
<td>amphetamine</td>
<td>0.779</td>
<td>2C-T-2</td>
<td>0.938</td>
</tr>
<tr>
<td>methamphetamine</td>
<td>0.789</td>
<td>3,4-MDMA</td>
<td>0.959</td>
</tr>
<tr>
<td>3,4-MDEA</td>
<td>0.805</td>
<td>2C-T-7</td>
<td>1.000 (14.24 min)</td>
</tr>
<tr>
<td>2C-B</td>
<td>0.904</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. SEPARATION TECHNIQUES
5. QUANTITATIVE PROCEDURES

5.1. GAS CHROMATOGRAPHY

Method SFL4 4dimeth1

Internal Standard Stock Solution:
1.00 mg/mL tetradecane (C\textsubscript{14}) in methylene chloride.

Standard Solution Preparation:
Prepare a standard solution of 2C-T-7·HCl within the linearity range listed below.

Sample Preparation:
Accurately weight an amount of sample into a volumetric flask so that the final 2C-T-7 HCl concentration is approximately equivalent to that of the standard solution. Dilute to volume with deionized water. A 2 mL aliquot of the sample is then extracted with 2 mL of 1M-5M sodium hydroxide into 2 mL of the internal standard stock solution.

Instrument:
Gas chromatograph operated in split mode with FID

Column:
100% dimethylpolysiloxane gum, 30 m x 0.25 mm x 0.25 µm film thickness

Carrier gas:
Hydrogen at 1.2 mL/min

Make-Up Gas:
Nitrogen at 30 mL/min

Temperatures:
Injector: 265°C
Detector: 275°C
Oven program: 220°C isothermal

Injection Parameters:
Split Ratio: 50:1
1 µL injection
Typical Retention Time: 2C-T-7·HCl: 2.39 min
C_{14}: 1.30 min

Linear Range: 0.166 – 4.978 mg/mL

Repeatability: RSD less than 3%

Correlation Coefficient: \(r^2 \) greater than 0.998

Accuracy: Error less than 5%

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>RRT</th>
<th>COMPOUND</th>
<th>RRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>amphetamine</td>
<td>0.505</td>
<td>2C-B</td>
<td>0.754</td>
</tr>
<tr>
<td>methamphetamine</td>
<td>0.512</td>
<td>caffeine</td>
<td>0.771</td>
</tr>
<tr>
<td>C_{14}</td>
<td>0.543</td>
<td>2C-I</td>
<td>0.862</td>
</tr>
<tr>
<td>3,4-MDA</td>
<td>0.575</td>
<td>2C-T-2</td>
<td>0.886</td>
</tr>
<tr>
<td>TFMPP</td>
<td>0.590</td>
<td>2C-T-7</td>
<td>1.000 (2.39 min)</td>
</tr>
<tr>
<td>3,4-MDMA</td>
<td>0.594</td>
<td>procaine</td>
<td>1.039</td>
</tr>
<tr>
<td>3,4-MDEA</td>
<td>0.613</td>
<td>tetracaine</td>
<td>1.537</td>
</tr>
</tbody>
</table>

5.2. NUCLEAR MAGNETIC RESONANCE

Method SFL1 NMR1-2

Reagents: Deuterochloroform (CDCl$_3$) containing TMS (Tetramethysilane) for 0 ppm reference

Internal Standard Stock Solution (ISSS): Commercially available deuterochloroform (CDCl$_3$) containing TMS. Determine TMS concentration by quantitating with a pure reference standard such as dimethylsulfone.

Sample Preparation: Accurately weigh an amount of sample, usually 10-30 mg, into a centrifuge tube and add 1 mL of CDCl$_3$ that does not contain TMS. Vortex for several seconds. If insolubles are present, sonicate 15 min. Add 1.0 mL ISSS, mix and filter if necessary. Place in NMR sample tube.
Instrument: Varian Mercury 400 MHz NMR spectrometer with proton detection probe

Parameters:
- Spectral width: at least containing -3 ppm through 13 ppm
- Pulse width: lesser of 10 µs or 90°
- Delay between pulses: 45 s
- Number of scans (NT): multiple of 4
- Number of steady state scans: 0
- Linearity throughout spectrum: oversampling of 4 or more
- Shimming: automatic gradient shimming of Z1-4 shims
- Phasing, Drift Correction: automatic or manual

Total Run Time per Sample:
- 6 min (NT = 4)
- 14 min (NT = 16)

Uniformity within spectral width: 0.3% RSD (-0.6 to 11.4 ppm)

Linear Range: 0.6 - 60 mg/mL

Repeatability: less than 4%

Correlation Coefficient: 1.000

Accuracy: less than 3%

Signals used for quantitation (position in ppm with number of protons):
- 6.8 (2)
- 3.2 (2)
- 3.0 (2)
- 1.0 (3)

Method SFL1 NMR1-5

Reagents:
deuterochloroform (CDCl$_3$) containing TMS (tetramethylsilane) for 0 ppm reference and deuteromethanol (CD$_3$OD) to aid solubility

Internal Standard Stock Solution (ISSS):
Commercially available deuterochloroform (CDCl$_3$) containing TMS. Determine TMS concentration by quantitating with a pure reference standard such as dimethylsulfone.

Sample Preparation:
Accurately weigh an amount of sample, usually 10-30 mg, into a centrifuge tube and add 2 mL of ISSS and 1 mL of CD$_3$OD, not containing TMS. Vortex for several seconds. If insolubles are present, sonicate 15 minutes. Filter if necessary. Place in NMR sample tube.

Instrument: Varian Mercury 400 MHz NMR spectrometer with proton detection probe
Parameters:
- Spectral width: at least containing -3 ppm through 13 ppm
- Pulse width: lesser of 10 µs or 90°
- Delay between pulses: 45 s
- Number of scans (NT): multiple of 4
- Number of steady state scans: 0
- Linearity throughout spectrum: oversampling of 4 or more
- Shimming: automatic gradient shimming of Z1-4 shims
- Phasing, Drift Correction: automatic or manual

Total Run Time per Sample:
- 6 min. (NT = 4)
- 14 min. (NT = 16)

Uniformity within spectral width:
- 0.3% RSD (-0.6 to 11.4 ppm)

Linear Range:
- 0.6 - 60 mg/mL

Repeatability:
- less than 4%

Correlation Coefficient:
- 1.000

Accuracy:
- less than 3%

Signals used for quantitation (position in ppm with number of protons):
- 6.9s(1)
- 6.8s(1)
- 3.85s(3)
- 3.8s(3)
- 3.2t(2)
- 3.0t(2)
- 2.8dd(2)
- 1.6sextet(2)
- 1.0t(3)

5.3. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Method SFL1 LC1-51

Standard Solution Preparation:
Prepare a standard solution of 2C-T-7 at approximately 350 µg/mL using methanol. Store solution in freezer covered with foil.

Sample Preparation:
Accurately weigh an amount of sample into an appropriate volumetric or Erlenmeyer flask and dilute so that the final 2C-T-7 concentration is approximately that of the standard solution.

Instrument:
HP 1100 (or comparable) liquid chromatograph equipped with a diode array detector
Column:
5 µm Phenomenex Luna, 250 mm x 3.2 mm, 35°C

Detector:
UV, 254,310 nm

Flow:
1.0 mL/min

Injection Volume:
5.0 µL

Buffer:
4000 mL water
22.5 mL phosphoric acid
22.5 mL triethanolamine
Check pH; adjust as necessary to between 2.2 and 2.3 with phosphoric acid or triethanolamine
Filter the buffer.

Mobile Phase:
Buffer: Methanol
10% MeOH for 12 min
20% MeOH for 8 min

Linear Range:
3.5 - 7062 µg/mL

Repeatability:
RSD less than 0.5%

Correlation Coefficient:
0.9999

Accuracy:
less than 5%

6. QUALITATIVE DATA

6.1. ULTRAVIOLET SPECTROPHOTOMETRY

<table>
<thead>
<tr>
<th>SOLVENT</th>
<th>MAXIMUM ABSORBANCE (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>251, 303 (0.08 mg/mL)</td>
</tr>
</tbody>
</table>

6.2. LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY
Method Phen01

Sample Preparation:
Dilute analyte in an appropriate volume of HPLC-grade water and pass through 0.45µm polypropylene filter. Introduce solution via divert valve of the mass spectrometer with a flow rate of 400 µL/minute of HPLC-grade water.

Instrument: LCQ Advantage MAX in ESI Mode

Sheath Gas (arb): 10

Auxiliary/Sweep Gas (arb): 0

Spray Voltage (kV): 4.50

Spray Current (µA): 0.29

Capillary Temperature (°C): 250.0

Capillary Voltage (V): 13.00

Tube Lens Offset (V): -25.00

Scan Mode: MS or MS³ (depending on experiment being performed)

Mass Range: Normal; MS: 50-550 amu; MS³: 60 – 550 amu

Scan Type: Full

Scan Time (microscans): 1

Maximum Injection Time (ms): 1000.0

Source Fragmentation: Off

For MS³:
Parent Masses (m/z): MS²: 256.0
MS³: 239.1

Isolation Width (m/z): 1.0

Normalized Collision Energy (%): MS²: 25.0
MS³: 40.0
Activation Q: 0.250

Activation Time (msec): 30.0

See spectra on the following pages for, FTIR ATR, Vapor Phase IR, GC Mass Spectrometry, Mass Spectrometry (MS1), Mass Spectrometry (MS3), and Nuclear Magnetic Resonance.

7. REFERENCES

8. ADDITIONAL RESOURCES

Forendex

Wikipedia
Under the above conditions, vapor phase IR cannot be used to distinguish between 2C-T-2 and 2C-T-7.
EI Mass Spectrum: 2C-T-7, Lot # 2TDM-265-01

API – ESI Mass Spectrum: 2C-T-7, Lot # 2TDM-265-01

MS\(^1\) mode (see text for parameters)
API – ESI Mass Spectrum: 2C-T-7, Lot # 2TDM-265-01
MS³ mode (see text for parameters)

¹H NMR: 2C-T-7, Lot # 2TDM-265-01
Deuterium Oxide, 400MHz
13C NMR: 2C-T-7, Lot # 2TDM-265-01
CD$_3$OD, 100.6 MHz

Abbreviations used:
BZP = 1-benzylpiperazine
2C-B = 4-bromo-2,5-dimethoxyphenethylamine
2C-T-2 = 2,5-dimethoxy-4-ethylthiophenethylamine
2C-T-7 = 2,5-dimethoxy-(4-N-propylthio)-beta-phenethylamine
2C-I = 4-iodo-2,5-dimethoxy-beta-phenethylamine
4-MeOPP = 1-(4-methoxyphenyl)piperazine
TFMPP = trifluoromethylphenylpiperazine