

1. SYNONYMS

CFR:

CAS \#:

Stride II:

Other Names:

Hydrocodone

Base: 125-29-1
Hydrochloride: 25968-91-6
Phosphate: 34366-67-1
Tartrate (anhydrous): 143-71-5
Tartrate (hemipentahydrate): 34195-34-1
Hydrocodone
6-Deoxy-7,8-dihydro-3-O-methyl-6-oxomorphine
Dihydrocodeinone
Dihydrocodeinone Hydrochloride
Dihydrocodeinone Acid Tartrate
Hydrocodone Acid Tartrate
Hydrocone Bitartrate
Dicodid
Codone
Corutol DH
Hycodan
Hycon
Robidone
Hycomine

2. CHEMICAL AND PHYSICAL DATA

2.1. CHEMICAL DATA

Form	Chemical Formula	Molecular Weight	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$
Base	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$	299.4	198

Hydrochloride	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot \mathrm{HCl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	380.9	$158-186$
Phosphate	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot 1.5 \mathrm{H}_{3} \mathrm{PO}_{4}$	446.4	$* * *$
Tartrate	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	494.5	$146-148$

2.2. SOLUBILITY

Form	A	C	E	H	M	W
Base	***	VS	S	SS	S	I
Hydrochloride	***	***	I	I	***	FS
Phosphate	***	I	I	I	***	VS
Tartrate	SS	I	I	I	PS	S

$\mathrm{A}=$ acetone, $\mathrm{C}=$ chloroform, $\mathrm{E}=$ ether, $\mathrm{H}=$ hexane, $\mathrm{M}=$ methanol and $\mathrm{W}=$ water, $\mathrm{VS}=$ very soluble, $\mathrm{FS}=$ freely soluble, $\mathrm{S}=$ soluble, $\mathrm{PS}=$ sparingly soluble, $\mathrm{SS}=$ slightly soluble, $\mathrm{VSS}=$ very slightly soluble and $\mathrm{I}=$ insoluble

3. SCREENING TECHNIQUES

3.1. COLOR TESTS

REAGENT	COLOR PRODUCED
Marquis	Yellow to brown to violet
Mecke's reagent	Yellow to green

3.2. CRYSTAL TESTS

REAGENT	CRYSTALS FORMED
Fulton's iodine reagent C-2	Single rods after 30-60 seconds, the rosettes of needles which grow into rods. The rods then begin to turn into plates which vary in color from orange to orange-red
Platinum bromide in $\mathrm{HBr}-\mathrm{H}_{2} \mathrm{SO}_{4}$	Rosettes of needles yellow in color, forms quickly

3.3. THIN LAYER CHROMATOGRAPHY

Visualization

Acidified iodoplatinate spray

	Relative $\mathbf{R}_{\mathbf{f}}$		
	System TLC $\mathbf{1 3}$	System TLC $\mathbf{1 4}$	System TLC $\mathbf{1 5}$
acetaminophen	0	0.7	0
aspirin	0	0.1	0
hydrocodone	0.2	0.6	0.2

3.4. GAS CHROMATOGRAPHY

Method HCD-GCS1

Instrument:

Column:

Carrier gas:

Temperatures:

Injection Parameters:

Gas Chromatograph operated in split mode with FID
5% phenyl/ 95% methyl silicone $12 \mathrm{mx} 0.2 \mathrm{~mm} \times 0.33 \mu \mathrm{~m}$ film thickness

Helium at $1.0 \mathrm{~mL} / \mathrm{min}$

Injector: $270^{\circ} \mathrm{C}$
Detector: $280^{\circ} \mathrm{C}$
Oven program:

1) $175^{\circ} \mathrm{C}$ initial temperature for 1.0 min
2) Ramp to $275^{\circ} \mathrm{C}$ at $15^{\circ} \mathrm{C} / \mathrm{min}$
3) Hold final temperature for 3.0 min

Split Ratio $=60: 1,1 \mu \mathrm{~L}$ injected

Samples are to be dissolved in 4:1 chloroform: methanol and filtered.

COMPOUND	RRT	COMPOUND	RRT
amphetamine	0.09	diphenhydramine	0.49

methamphetamine	0.10	lidocaine	0.50
aspirin breakdown 1	0.10	theophylline	0.57
aspirin breakdown 2	0.11	aspirin breakdown 5	0.58
nicotinamide	0.13	chlorpheniramine	0.61
ephedrine	0.15	procaine	0.63
phenylpropanolamine	0.15	cocaine	0.79
pseudoephedrine	0.15	triprolidine	0.84
aspirin Breakdown 3	0.18	tetracosane	0.91
3,4-MDMA	0.22	codeine	0.95
aspirin Breakdown 4	0.23	morphine	0.98
benzocaine	0.24	hydrocodone	$\mathbf{1 . 0 0}(\mathbf{6 . 4 6} \mathbf{~ m i n})$
guaifenesin	0.30	hydromorphone	1.01
acetaminophen	0.31	oxycodone	1.06
meperidine	0.39	heroin	1.15
caffeine	0.45	quinine	1.27
ketamine	0.48		

4. SEPARATION TECHNIQUES

Dissolve the sample in water and add NaHCO_{3} until basic. Extract the hydrocodone base from the aqueous layer with chloroform, ether, or hexane. Filter the organic layer through a bed of anhydrous sodium sulfate. Hydrocodone can also be separated from acetaminophen by washing the sample with hexane saturated with $\mathrm{NH}_{4} \mathrm{OH}$. Take the sample to dryness.

5. QUANTITATIVE PROCEDURES

5.1. GAS CHROMATOGRAPHY

Method HCD-GCQ1

Internal Standard Stock Solution:

$0.20 \mathrm{mg} / \mathrm{mL}$ triprolidine hydrochloride in water.

Standard Solution Preparation:

Accurately weigh and prepare a standard solution of hydrocodone bitartrate at approximately $0.3 \mathrm{mg} / \mathrm{mL}$ using the internal standard stock solution. Take 2.0 mL of the standard solution and make the solution basic with
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and add 1.0 mL of chloroform. Shake the solution to transfer the internal standard and hydrocodone into the chloroform layer. Discard the aqueous layer and inject the chloroform layer.

Sample Preparation:

Accurately weigh an amount of sample into a volumetric flask and dilute with internal standard stock solution. If necessary dilute the sample so the final concentration approximates the standard concentration or falls within the linear range. Take 2.0 mL of the sample solution and make the solution basic with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and add 1.0 mL of chloroform. Shake the solution to transfer the internal standard and hydrocodone into the chloroform layer. Discard the aqueous layer and inject the chloroform layer.

Instrument:
Column:

Carrier gas:
Temperatures:

Injection Parameters:
Typical Retention Time:

Linear Range:

Repeatability:
Correlation Coefficient:
Accuracy:

Gas Chromatograph operated in split mode with FID
5% phenyl/ 95% methyl silicone $12 \mathrm{mx} 0.2 \mathrm{~mm} \times 0.33 \mu \mathrm{~m}$ film thickness
Helium at $1.0 \mathrm{~mL} / \mathrm{min}$
Injector: $270^{\circ} \mathrm{C}$
Detector: $280^{\circ} \mathrm{C}$
Oven: $250^{\circ} \mathrm{C}$
Split Ratio $=60: 1,1 \mu \mathrm{~L}$ injected
Triprolidine: 1.49 min
Hydrocodone: 2.37 min
0.03 to $0.70 \mathrm{mg} / \mathrm{mL}$ Hydrocodone Bitartrate

RSD less than 1.5%
0.999

Error less than 5\%

COMPOUND	RRT	COMPOUND	RRT
MDA	<0.23	lidocaine	0.31
MDMA	<0.23	phenobarbital	0.34
acetaminophen	<0.23	procaine	0.39
amphetamine	<0.23	methaqualone	0.53
benzocaine	<0.23	cocaine	0.57
ephedrine	<0.23	tetracaine	0.58
secobarbital	<0.23	triprolidine	0.63
nicotinamide	<0.23	tetracosane	0.71
dimethylsulfone	<0.23	codeine	0.87
methamphetamine	<0.23	morphine	0.98
pentobarbital	<0.23	hydrocodone	$\mathbf{1 . 0 0}(\mathbf{2} .37 \mathbf{~ m i n})$

ibuprofen	<0.23	hydromorphone	1.02
phenacetin	0.23	oxycodone	1.20
caffeine	0.30	heroin	1.54
diphenhydramine	0.30	quinine	2.26

5.2. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Method HCD-LCQ1

Internal Standard Stock Solution:

$0.2 \mathrm{mg} / \mathrm{mL}$ strychnine in $85: 151 \mathrm{~N} \mathrm{HCl}$: acetonitrile.

Standard Solution Preparation:

Accurately weigh and prepare a standard solution of hydrocodone bitartrate at approximately $0.2 \mathrm{mg} / \mathrm{mL}$ using the internal standard stock solution.

Sample Preparation:

Accurately weigh an amount of sample into a volumetric flask and dilute with internal standard stock solution. If necessary dilute the sample so the final concentration approximates the standard concentration or falls within the linear range. Filter sample with 0.45 -micron filter.

Instrument:

Column:

Detector:

Flow:

Injection Volume:

Buffer:

Mobile Phase:

Typical Retention Time:

Linear Range:
Repeatability:
Correlation Coefficient:

High performance liquid chromatograph equipped with diode array
Waters SymmetryShield RP18, $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$ particle size
UV, 210 nm
$1.0 \mathrm{~mL} / \mathrm{min}$
$1 \mu \mathrm{~L}$
$20 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, \mathrm{pH}=5.5$

Buffer/acetonitrile 85:15

Hydrocodone Bitartrate: 4.38 min
Strychnine: 5.99 min
0.02-0.5 mg/mL Hydrocodone Bitartrate

RSD less than 1.0%
0.9999

Accuracy: Error less than 5\%

COMPOUND	RRT	COMPOUND	RRT
morphine	0.44	acetaminophen	0.81
hydromorphone	0.51	oxycodone	0.85
pseudoephedrine	0.67	aspirin	0.90
codeine	0.67	hydrocodone	$\mathbf{1 . 0 0}(\mathbf{4 . 3 8} \mathbf{~ m i n})$
ephedrine	0.68	guaifenesin	2.04

6. QUALITATIVE DATA

See spectra on the following pages for FT-IR, Mass Spectrometry, Nuclear Magnetic Resonance, and Vapor Phase IR.

It should be noted that hydrocodone bitartrate undergoes some decomposition in $\mathrm{D}_{2} \mathrm{O}$. The NMR spectra may have minor peaks present. A basic extraction into CDCI_{3} provides improved spectra.

7. REFERENCES

Clarke, E.G.C., Isolation and Identification of Drugs, 2nd Edition, The Pharmaceutical Press, 1986.
Budavari, S., The Merck Index, 12th Edition, Merck and Co., Inc., 1996.
Butler, W. P., Methods of Analysis for Alkaloids, Opiates, Marihuana, Barbiturates and Miscellaneous Drugs, The Internal Revenue Service, pp 50-51.

