1. GENERAL INFORMATION

IUPAC Name: 1-(4-chlorobenzamidomethyl)-cyclohexyldimethylamine; hydrochloride

CAS#: 1225333-02-7; 41805-00-9 (base)

Synonyms: A02

Source: Synthesized Material Lot# JLK008-107-02

Appearance: White Crystals (HCl)

UV$_{max}$ (nm): Not Determined

2. CHEMICAL AND PHYSICAL DATA

2.1 CHEMICAL DATA

<table>
<thead>
<tr>
<th>Form</th>
<th>Chemical Formula</th>
<th>Molecular Weight</th>
<th>Melting Point ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>C${16}$H${23}$ClN$_{2}$O-HCl</td>
<td>331.28</td>
<td>197.0 ± 2.37</td>
</tr>
<tr>
<td>base</td>
<td>C${16}$H${23}$ClN$_{2}$O</td>
<td>294.82</td>
<td>Not determined</td>
</tr>
</tbody>
</table>
3. QUALITATIVE DATA

3.1 NUCLEAR MAGNETIC RESONANCE

Sample Preparation: Dilute analyte to ~5 mg/mL in deuterated chloroform: methanol (CDCl₃:CD₃OD; 1:5) + TMS.

Instrument: 400 MHz NMR spectrometer
Parameters: Spectral width: 6410.3 Hz containing -3 ppm through 13 ppm
Pulse angle: 90°
Delay between pulses: 30 seconds

¹H NMR: AH-8529 HCl; Lot JLK008-107-02; CDCl₃:CD₃OD (1:5) + TMS; 400 MHz
AH-8529 hydrochloride

The Krstenansky lab at the KGI School of Pharmacy and Health Sciences generated this monograph using synthesized material.
3.2 GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Sample Preparation: Dilute analyte ~ 1 mg/mL in methanol

Instrument: Shimadzu gas chromatograph operated in split mode with MS detector
Column: Rtx5MS (a DB-5 equivalent); 30m x 0.25 mm x 0.25 μm
Carrier Gas: Helium at 1 mL/min
Temperatures:
- Injector: 280°C
- MSD transfer line: 280°C
- MS Source: 200°C
Oven program:
1) 90°C initial temperature for 2.0 min
2) Ramp to 300°C at 14°C/min
3) Hold final temperature for 10.0 min

Injection Parameters: Split Ratio = 1:15, 1 μL injected
MS Parameters:
- Mass scan range: 34-550 amu
- Threshold: 100
- Tune file: 050218_Tune.qgt
- Acquisition mode: scan

Retention Time: 15.97 min

EI Mass Spectrum: AH-8529 HCl; Lot JLK008-107-02

Chemical Formula: C_{16}H_{24}ClN_{2}O_{4}^{+}
Exact Mass: 295.15717
AH-8529 hydrochloride

The Krstenansky lab at the KGI School of Pharmacy and Health Sciences generated this monograph using synthesized material

Zoomed view (126.15 has relative intensity of 100% and is truncated in this view)
3.3 INFRARED SPECTROSCOPY (FTIR)

Instrument:
FTIR with ZnSe ATR attachment (1 bounce)

Scan Parameters:
- Number of scans: 4
- Number of background scans: 4
- Resolution: 4 cm\(^{-1}\)
- Sample gain: 8
- Aperture: 150

FTIR ATR (ZnSe, 1 Bounce): AH-8529 HCl; Lot JLK008-107-02

![FTIR Spectrogram](image-url)
AH-8529 hydrochloride

The Krstenansky lab at the KGI School of Pharmacy and Health Sciences generated this monograph using synthesized material.
AH-8529 hydrochloride

The Krstenansky lab at the KGI School of Pharmacy and Health Sciences generated this monograph using synthesized material

3.4 RAMAN SPECTROSCOPY

Instrument: Rigaku Progeny 1064
Scan Parameters: Power (mW): 350
Exposure (ms): 1000
Averages: 30
Threshold: 0.80

Raman (1064 nm): AH-8529 HCl; Lot JLK008-107-02
4. ADDITIONAL RESOURCES

1-(3,4-DICHLOROBENZAMIDOMETHYL)CYCLOHEXYLDIMETHYLAMINE
Norman James Harper and George Bryan Austin Veitch

1-(3,4-Dichlorobenzamidomethyl)cyclohexyldimethylamine and related compounds as potential analgesics
N. J. Harper, G. B. A. Veitch, and D. G. Wibberley
Journal of Medicinal Chemistry 1974 17 (11), 1188-1193
DOI: 10.1021/jm00257a012

5. ACKNOWLEDGEMENT

These data are from a project supported by Award No. 2016-R2-CX-0059, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Justice. We also thank Rigaku Corporation for the loan of the Progeny 1064 Raman instrument.